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Tin is an exception probably because of its complicated 
electronic structure and the complexity of the induced 
field, discussed above. The very large induced fields in 
Au and Re17 dissolved in Fe are probably particularly 
significant, as both elements have 6s electrons with as
sociated large fields. The internal field in atomic copper 
in the £s2Si/2 state is 1.3X106 G and that of atomic 
gold in the 6s2Si/2 state is 21X106 G. These fields can be 
derived by using Eq. (15.5) in Ref. 36 and appropriate 
data from atomic spectroscopy.38,39 Thus the internal 
fields of Cu and Au in Fe would correspond to 16% and 
7% polarization of the conduction electrons, respect
ively. The internal field in atomic Ag in the 5s2Si/2 
state is 4.9X 106 G.40 It would be interesting to deter
mine the induced field at Ag atoms dissolved in Fe, 
which should be ^400 kG by analogy with Cu and Au. 

38 R. Ritschl, Z. Physik 79, 1 (1932). 
39 R. E. Sheriff and D. Williams, Phys. Rev. 82, 651 (1951). 
40 G. Wessel and H. Lew, Phys. Rev. 92, 641 (1953). 

I. INTRODUCTION 

THE drift mobility of a slow electron in the conduc
tion band of a polar crystal has been the subject 

of much theoretical investigation.1"9 There exist a large 
number of expressions for the low-temperature drift 
mobility, which unfortunately differ considerably in 
the experimentally interesting range10,11 of coupling 
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Kuper and G. D. Whitfield (Oliver and Boyd Ltd., Edinburgh, 

Notes added in proof, (a) Dr. A. de Shalit (private 
communication) has informed us that newer data on 
transition rates in Au197 would lower the core-excitation 
estimate of #77 from +0.60 nm to about the experi
mental value of +0.37 nm. From calculations on the 
quasiparticle model, L. Kisslinger and R. A. Sorensen 
have also predicted a very low value (^0.12 nm) for 
this moment (private communication). 

(b) The unusual low-field behavior of our samples 
was reversible. If this behavior is the result of spin 
orientation, a more significant zero-field splitting may 
be obtained by extrapolating back the high-field slopes. 
We acknowledge a discussion of this point with Dr. 
R. J. Elliott. 
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constant (a^3). This spread of results is illustrated for 
several representative theories in Fig. 1. Notice that at 
a=3, the results of Low and Pines differ from the 
results of Schultz by a factor of 6. Clearly it would be 
desirable to find out which of the various theories is 
most reliable. We attack the problem here by obtaining 
a perturbation expansion of the mobility in a power 
series in the coupling constant; we then compare the 
exact perturbation expansion with the power series 
expansion of the various intermediate coupling theories. 
This is done in the belief that the best intermediate 
coupling theory is likely to have a power series expan
sion which corresponds quite closely to the exact 
expansion. 

Thus, the main body of this paper is concerned with 
finding the first nontrivial term in the expansion of the 

1963), pp. 323-355, for a summary of the values of a expected for 
various different materials. 

11 Reference 6 summarizes experimental mobility data on the 
intermediate coupling materials AgCl and AgBr. 
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The low-temperature drift mobility of the polaron is calculated in perturbation theory with the aid of the 
Kubo formula. The result is y,—MO (1 —a/'6), where no is the weak coupling mobility /*o = (e/2ao)m) exp (Jua/kT). 
A comparison is made with the perturbation expansion of various intermediate coupling mobility theories. 
The expansion of Osaka, jLt=//o(l—0.173a4 ), agrees most closely with the exact perturbation expansion. 
It is concluded that the Osaka formula is probably the best in the intermediate coupling range a < 6 . It is 
explicitly shown to lowest nontrivial order in a that various quasiparticle concepts are valid, viz., that 
ju=er/m*, and that the electron density is a momentum integral over /(E(p)). 
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mobility. Green's function techniques12'13 are used for 
this purpose. In Sec. II the self-energy of the one-
particle Green's function is expanded in a power series 
in a. In Sec. I l l , the Kubo formula14 for the mobility is 
expanded in terms of the one-particle Green's function, 
and the mobility is then obtained to the first nontrivial 
order. Finally, in Sec. IV we compare our exact pertur
bation expansion with the various intermediate coupling 
theories. 

II. EXPANSION OF THE SELF-ENERGY 

We begin with the Frohlich15'16 Hamiltonian for the 
single electron in the crystal: 

p2 r 4TTQ!-]1/2 

<*LFv2J 
# = - + £ aq+aq+Z 

2 « (1) 
We eliminate the electron-phonon interaction in favor 
of a retarded "electron-electron" interaction17 

F(1 -10 = F>(1-10 for tii>itv 
= F<(1-1') for ih<ih>, (2) 

with 

F>(r,0 = V<(t, - 0 = -i—[(N+\)e--it+Neit~]. (3) 
rJ2 

Here JV"= \jp—1]_1 is the equilibrium number of 
phonons in the state q. In this paper, we shall restrict 
ourselves to the case in which 1//3, the temperature 
measured in energy units, is much smaller than the 
phonon energy. Then N^(T^<^X. 

In this section, we shall find the spectral weight 
function for the one-electron Green's function, 

4(p,a>)=-
r(M 

[ c o_^ / 2_ReS(p,co)]2+[r(p,co)/2]2 

by expanding the self-energy, 

•&/r(p,co') 
S(p,#o)= f 

2w pQ—o)' 

(4) 

(5) 

in a power series in a. Since there is only one particle 
in the crystal, we can make use of a variety of simplifica-

12 P. C. Martin and J. Schwinger, Phys. Rev. 115, 1342 (1959). 
13 L. P. Kadanoff and G. Baym, Quantum Statistical Mechanics 

(W. A. Benjamin, Inc., New York, 1962). 
M R. Kubo, Can. J. Phys. 34,1274 (1956). 
16 H. Frohlich, Advan. Phys. 3, 325 (1954). 
16 We follow the notation of R. P. Feynman [Phys. Rev. 97, 

660 (1955)] in using units in which n, the electron band mass, 
and the phonon frequency are all set equal to unity. 

17 This retarded interaction was used at zero temperature by 
V. M. Galitskii and A. B. Migdal, Zh. Eksperim. i Teor. Fiz. 34, 
139 (1958) [translation: Soviet Phys.—JETP 7, 96 (1958)] and 
A. B. Migdal, ibid. 34, 1438 (1958) [translation: ibid. 7, 996 
(1958)]. I t has been applied to the finite temperature polaron 
problem by R. D. Puff and G. D. Whitfield in Polarons and 
Excitons, edited by C. G. Kuper and G. D. Whitfield (Oliver and 
Boyd Ltd., Edinburgh, 1963), pp. 171-190. 

FIG. 1. Comparison of various mobility theories. Here /*//*<> 
is the predicted mobility divided by the weak coupling mobility 
\jto=e/(2aSrnua)2' 

tions appropriate to the low-density case. In general, 
single-electron propagation is described by the two 
functions G>(p,co) and G<(p,cu) defined by 

G>(p>«) = i l ( p ^ ) [ l - / ( w ) ] , 

G<(p,co) = ^(p,co)/(a>), (6) 

where /* is the chemical potential.18 However, in the 
low-density limit, ft* —» — oo f /(co)<<Cl, and 

G>(p,a>)~,4(p,co) 
G<(p,co) ̂ ( p , w ) ^ M « G > ( p j ( 0 ) . (7) 

Thus, in the evaluation of 2, we shall set G<(p,w) = 0. 
With this simplification, 2(1— 1') may more easily be 

expanded in a power series in a. This expansion to 
second order is diagrammatically indicated in Fig. 2. 
Here, the solid lines represent the free propagator 

r dzp 

= 0 

ip. ( r i -n / ) - i |p 2 ( f i -< i / ) 

for iti>iti 

for ih<itv, (8) 

while the dashed lines represent the retarded potential 
V. The first-order diagram, indicated in Fig. 2(a), 
gives 

S i ( l - 1 0 = i F ( l - 1 0 G o ( l - 1 0 
or 

2>i(P,#o)=/ - , (9) 
J 2ir po—oo 

18 Although we use the symbol jx for both the mobility and the 
chemical potential, no confusion should arise. 
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FIG. 2. Diagrams for the self-energy. We calculate the effects of 
diagrams 2(a), 2(b), and 2(c), but not of 2(d) or 2(e), since the 
latter necessarily vanish when the density goes to zero. 

with 

ri(p,») 
• / 

— ~ p\ra(to+l-^/2) 
( 2 ^ ) a ( p _ p 0 2 

+ (ff+l)8(a>-l-# 'Y2)]. (10) 

Physically, r(p,to) represents the rate of emission and 
absorption of phonons by a hypothetical electron of 
momentum p and energy co. Below a certain threshold 
(here co= 1) real emission processes are impossible, and 
r(p,co) is very small because it is proportional to N9 

the number of phonons available for absorption. In this 
region -4(p,co) is particularly simple. It is only large 
when o)—p2/2—Re2(p,co) nearly vanishes. The value of 
co for which this quantity vanishes is called E(p), the 
quasiparticle energy. I t obeys 

£(p) = ^/2+ReS(p,J?(p)>. 

In the region co~I£(p), -4(p,co) has the form 

A(p,u) = z(v)-

(11) 

(12) 
[co-£(p)J+C2r(p)]-2 

where r(p) is the quasiparticle lifetime defined by 

r(p) = Z(p)r(p,£(p)). (13) 

The quantity z(p), called the wave function renormal-
ization constant, is defined by 

z(p) = = [ l ReS(p,«)l I . (14) 
L do) J U-j?(p) 

For co<Z2(0), co—^2/2—ReS(p,w) can no longer vanish. 
In this region? we can neglect the appearance of r(p,co) 

in the denominator of Eq. (4), so that 

r(p,co) 
-4(P,») = 

[«-#«/2-ReS(p,«)]* 
for co<JS(0). (15) 

We shall be most concerned with the low-momentum 
quasiparticle states (p2/2^@~x<Ki), since these are the 
states which are appreciably excited at low temperature. 
We can determine the properties of these quasiparticles 
to first order in a by applying Eqs. (9) and (10) to 
find that for small p and co 

R e S ( p ^ ) « - a [ l + i « - i ^ ] . (16) 

Using Eq. (11), we recover the well-known results that 
for # 2 /2«l , 

jg(p) = _ a + ^ / 2 w * + 0 ( # * ) (17) 
with 

nt*=l+a/6, (18) 

while the wave function renormalization constant is 
for small p} 

*(0) = l - a / 2 . (19) 

We shall need Eqs. (17), (18), and (19) in our later 
discussion of the polaron mobility. It will also be 
necessary for us to have an expression for the density 
of electrons 

/

dzp r do) 
/ —G<(p,co) 

(2TT)3J 2W 

/

dzp r do) 

(2TT)3J 2TT 

which is correct to the first order in a. To obtain this 
expression, we notice that the factor e~/3<Ctf-M) highly 
weights the integrand in Eq. (20) for small values of co. 
We split the integral into two parts: For co>E(0) we 
use Eq. (12) to express A (p,co), because the temperature 
factor cuts out all contributions from energies appre
ciably greater than the minimum quasiparticle energy, 
£(0). Then 

r dzp r™ do) 
/ / —-e 

J (2iryjE(0)27r 
-er*(*-M)*(0) 

X 

l(0) 
2 J J (2TT) 8 [co-E(p)]H-[2r(0)]-2J J (2T)» 

f 
J —o 27r[co-^ 2 /2-ReS(p,w)] 2 

(21) 

In the limit as r —» oo, we can replace the { } in Eq. 
(21) by 2Td(a)—E(p)). To first order in a, we can 
replace r(p,co) in the second term by the ri(p,co) 
defined by Eq. (10), and neglect the ReS(p,co) in the 
denominator of the second term. Then, we find after 
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some integration that it is in fact valid to all orders in a in this low-tempera-
ture situation. However, we shall only need it to first 

iL^m*-* (22) o r d e r h e r e - ] 
(2^)3 So far, we have obtained n> m*, 0(0), and E(Q) to first 

order in a. However, we shall need ^ (O) to order a2. 
[Although we have verified Eq. (22) only to first Therefore, the contributions of Figs. 2(b) and 2(c) to 

order in a, it appears from preliminary calculations that T(p,a>) must be evaluated. Figure 2(b) gives 

• / • 

2«>(1-1 ' ) = - (d»i( diifd'fyf divV>(i-i')V>(l-l')Go>(l-i)Go>(i-i')Go>(i'-l'), (23) 

which has the Fourier transform 

r2&(q,co)= [ih[ <te-*»"H.«C!„>.(r><) 

r d*p r d*p' 1 6 T T W f r 1 1 n 

= Re / / a(«-/2/2) + 
J (2ir)8i (2x)3(p-q)2(p-p ')2 l L(w+l-/>2/2+te)2 («- l - /> 2 /2+ie) 2J 

+[—5(co+l-^/2)l —+f—5(W-l-^/2)l —-\+0(m , (24) 
Law Su-p'yi Law ju-p'yi) 

where t is an infinitesimal. Similarly Fig. 2(c) gives 

V a - l ^ - f ^ f dhftPfvf divV>(l~i')V>(i-l')Go>(l-i)Go>(i-i')Go>(l'-V) (25) 

and 
r d'p r d*p' 3 2 T T W ( 1 1 

r2«(q,w) = (P/ / W<o-(p+p' -q) 2 /2) 
J (IT)*) (2T)» (p-q) 2 (p ' -q) 2 l w + 1 - ^ / 2 « - l - # * / 2 

1 1 1 1 1 
+5(«+l-/>2 /2) +5 (w- l -* ' 2 / 2 ) \+OQf>), (26) 

u-l-p'yi co- (p+p ' -q) 2 /2 o>+l-f/2 w- (p+p ' -q ) 2 / 2 J 

where (P indicates that the integrals are to be interpreted so that 
in the principal value sense. T_ 1(0) = 2aN+0(a?). (30) 

To second order in a, r-1(0) contains the sum ^ ( 0 , 0 ) 
+r2<!(0,0). Notice that the first terms in the { } of T h e inverse quasiparticle lifetime contains no correc-
Eqs. (24) and (26) each produce discontinuities at tions of order a2. 
co=0, q=0. Each term contributes for w>0 and q=0 ; 
neither contributes for w<0. However, as Schultz3 has III. CALCULATION OF THE MOBILITY 
pointed out, these discontinuities cancel in the sum T o c a i c u i a t e t h e mobility, we use the Kubo" formula 
r2&(q,co)+r2C(q,a;). Therefore, we may safely eliminate 
them by evaluating T2& and T2c for w just less than zero. ep /•«> r 
Then we find after performing the integrals that \x^— / dt I rfV(j(r,0*j(0,0)), (31) 

6nJ-.w J 
r26(0,a))|w„o-=-2aiVB7ra], (27) 

and where j(r,/) is the momentum current, given in terms 
r2c(0,co) | w„<r= 2aN[%wot]. (28) of the Heisenberg field operators by 

Thus, the second-order contributions to T~1(0) from the j (r,/) = - \i[^(r,/) V^(r,0 - V^f (r,*)^(r,/)] • (32) 
diagrams 2(b) and 2(c) exactly cancel, so that to second . . . . -̂  /„«\ I ^^ 
order, only T1(p,co) contributes to T-1(0) . From Eq. (13) T h e correlation function in Eq. (31) can be expressed m 

terms of the two-particle Green's function G2 as 

and near o>=0, Eq. (10) implies that = l ( V i - Vv) • (Vi-V»)Gi(l,2; l',201 r - i V - i * . 

r1(0,w) = 2 d V [ l - « / 2 ] , (33) 
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FIG. 3. Diagrams for G2(l,2; l',2'). Here the solid lines are 
G's, not Go's. Figure 3(a) contributes a 1/a term to /*. Figure 3(b) 
is of order a0; 3(c) and 3(d) are of order a. Figure 3(e) is of the 
order of the density squared and may be neglected. 

Therefore, Eq. (31) becomes 

ep z*00 r 
M= / dh / d V i ( V i - V i ' ) 

2W-00 J 

• (V2-V2<)G2>(1,2; l',2'J|i<-i*,r-2+-o. (34) 

Here the G^ is a reminder that we should use the form 
of G2 appropriate for ih>ifo. 

To evaluate Eq. (34), we shall expand G2 in a power 
series in G and V. This expansion is indicated in Fig. 3. 
It should be noted that we cannot expand G2 in terms 
of Go and V because /x is proportional to a-1, and hence 
the Go expansion cannot converge. For most systems, 
even the expansion in V and G will converge very 
slowly.19 Fortunately this convergence is particularly 
rapid for the case of low-temperature optical phonon 
scattering. For small a, Fig. 3(a) gives the contribution 
of the scattering out of the beam term in the standard 
Boltzmann equation. It is of order a-1. Figures 3(b) 
and 3(c) give parts of the scattering back into the 
beam term. At high temperatures they too would be 
of order or1. However, at low temperatures the scatter
ing back into the beam term does not contribute to 
the mobility to lowest order in a.9 Therefore, Figs. 3(b) 
and 3(c) are not of order a -1 at low temperatures; 

19 For example, in a system of electrons interacting with 
acoustical phonons, an infinite set of diagrams must be summed to 
get results correct to order of"1. The application of the Kubo 
formula to such a system is discussed in detail by J. Ranninger in 
Polarons and Excitons, edited by C. G. Kuper and G. D. Whitfield 
(Oliver and Boyd Ltd., Edinburgh, 1963), pp. 202-210. 

instead they are of order a0 and a1, respectively. This 
especially rapid convergence of the perturbation theory 
simplifies our calculation considerably. We wish to 
calculate /x to order a0. We must calculate the contribu
tions from Figs. 3(a) and 3(b), but we can safely 
neglect Figs. 3(c), 3(d), and all higher order diagrams. 

Figure 3(a) gives a contribution to the mobility which 
is 

Ma = -
24tn 

J dtjd Vi(Vi-ViO' (v 2 -V 2
/ ) 

X G > ( l - 2 ' ) G < ( 2 - l ' ) U = i + , 2 ^ 

e/3 r dzp r do) 

J (2x>«y ~ 6nJ (2TT)37 2TT 
(35) 

The predominant contributions to Eq. (35) come for 
p=0, w«£(p). In this region we can write 

D4(P,")]2=0(/>)]2-
[r(p)]-

{C«-£(P)?+C2T(P)] -»}* 

which becomes in the limit of large r 

[^(p,co)T=47rr(p)[0(p)]25(co-E(p)). (36) 

Hence, Eq. (35) may be written as 

ep r dzp 
M«=— / p22r(0)[z(0)Je-WW-rt 

6nJ (2TT)3 

= er(0)[z(0)]2w*, (37) 

where we have used Eq. (22) in going from the first 
line to the second line of Eq. (37). We express w*, z, 
and r with the aid of Eqs. (18), (19), and (30), respec
tively, to find 

/ i a=(« /2a^) [ l - fa ] . (38) 

The next contribution to the mobility comes from 
Fig. 3(b), which gives 

G,»(l,2;l',2') = - * / dij rfPG(l-I) 
J 0 ./ 0 

XG(I-2 , )F(1-1 / )G(2-1 / )G(I , -10 . (39) 

For h—tv and fa—h'-=0y 

~t\ /.-t/3 

G2
i(l,2;l',2')=-i dl\ dl'G>(\-i) 

Jo J h 
XG>( l -2 / )F<( l - l , )G<(2- l , )G>( l , - l / ) (40) 

plus terms of order [G^2 , which we neglect. We substi
tute Eq. (40) into Eq. (34), and find after considerable 
algebra that Eq. (40) makes a contribution to the 
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mobility which is 

ep fdo> r dzp r d*pf 23/%a 
M6 = 

3n /

do) r d*p r d*p z*izwa 

2wJ (2ir)3J ( 2 T T ) 3 ( P - P 0 2 

+ReG(p,«M (p ' , «+ ! ) ]+ (N+1)A (p,«) ReG(p'? G>- \){A (p,«) ReG(p ' ,«- l)+ReG(p,«)il ( p ' , « - 1 ) ] } , (41) 

where 

ReG(p. 
dw' A .(p,o/) 

; 
27T 0> — CO 

We neglect the terms in Eq. (41) proportional to N and 
notice that the only important contribution to Eq. (41) 
comes from the term involving [.4(p,a>)]2, which we 
evaluate with the aid of Eq. (36). Thus, 

M6=—(25'W)r(0) 
/

dzp r 

Y2^i 
ftp' p-p' 

3n' J ( 2 T ) 3 J ( 2 T T ) 3 ( P - P 0 2 

— " f Ll+/2/2 
4-«»'/*^>+0(a). (42) 

Hence, finally, 

and 

Hh=laer{0)={e/2aN)ia, 

M = Ma+M6=Mo(l—a/6) , 

(43) 

(44) 

where MO is the weak coupling mobility |jtio=0/2aAT]. 
Again, we see a verification of the quasiparticle 

TABLE I. Expansion of the various mobility 
theories in powers of a.a 

Underlying 
theory 

Lee, Low, and Pines 

Feynman model 

Perturbation theory 

Mobility 
theory 

Low and Pines 
/ Osaka (Kadanoff) 
\Sehultz 
[ Garcia-Molinerb 

< Moritab 

I Present theory 

tt/no 
for 

a = 3 

0.34 
0.53 
2.0 
0.39 
0.1 

M/MO 
for 

a-»0 

1-0.500a 
1-0.173a 
1 + 1.05a 
1-0.250a 
l -2 .22a 
1-0.167a 

» The dc mobility of Ref. 7 is not included in this table, because it has 
the wrong temperature dependence in the low-temperature limit. 

b In theories which do not specify w*, we have used the Feynman-model 
values calculated by Schultz (Ref. 4). 

picture which would predict 

er(0) 

mr 2aN 
[ l - a / 6 + 0 ( a 2 ) ] . (45) 

We have explicitly verified that er(0)/m* is a correct 
expression for the mobility in the first nontrivial order 
in a; as mentioned earlier, however, preliminary 
calculations indicate that the quasiparticle picture of the 
polaron is generally valid at low temperatures for the 
description of polaron states with energies below the 
phonon emission threshold, so that eT(0)/ni* is probably 
correct to all orders in a at low temperatures. However, 
these speculations about the correctness of the quasi
particle picture are irrelevant to our main purpose here: 
the derivation of a perturbation theoretic formula for 
the mobility, as given by Eq. (44). This result is an 
exact perturbation expansion of the mobility which is 
appropriate for weak coupling, a/6<$Cl, and low temper
atures, pr^l. The next corrections to this formula 
will be terms MO/3"1 and MO(«/6)2 times numerical 
coefficients of order unity. Equation (44) is then 
inappropriate in the intermediate coupling domain 

IV. CONCLUSIONS 

One possible criterion for the reliability of a weak 
and intermediate coupling polaron mobility theory is 
that its expansion in powers of a correspond quite 
closely with the exact expansion. We have thus com
puted the first nontrivial term (proportional to a) in 
the expansion of M/MO for the various theories; the 
results are displayed in Table I. We see immediately 
that, according to the above criterion, the mobility 
formula which was orginally derived by Osaka (and 
recently derived in another way by one of us) is exceed
ingly good. The coefficient of the a term of J*/J*0 given 
by Osaka differs from the exact coefficient by only about 
4%. For this reason, we conclude that the Osaka 
formula is probably the most reliable low-temperature 
mobility result that we presently have. 
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